Published
- 1 min read
keras auc without tf.metrics.auc
The solution for this is noted below
keras auc without tf.metrics.auc
Solution
import tensorflow as tf
from sklearn.metrics import roc_auc_score
def auroc(y_true, y_pred):
return tf.py_func(roc_auc_score, (y_true, y_pred), tf.double)
# Build Model...
model.compile(loss='categorical_crossentropy', optimizer='adam',metrics=['accuracy', auroc])
Try other methods by searching on the site. That is if this doesn’t work